True numerical data can be meaningfully multiplied. For example, consider a model that predicts the value of a house based on its area. Note that a useful model for evaluating house prices typically relies on hundreds of features. That said, all else being equal, a house of 200 square meters should be roughly twice as valuable as an identical house of 100 square meters.
Oftentimes, you should represent features that contain integer values as categorical data instead of numerical data. For example, consider a postal code feature in which the values are integers. If you represent this feature numerically rather than categorically, you're asking the model to find a numeric relationship between different postal codes. That is, you're telling the model to treat postal code 20004 as twice (or half) as large a signal as postal code 10002. Representing postal codes as categorical data lets the model weight each individual postal code separately.
Encoding
Encoding means converting categorical or other data to numerical vectors that a model can train on. This conversion is necessary because models can only train on floating-point values; models can't train on strings such as "dog" or "maple". This module explains different encoding methods for categorical data.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-10-09 UTC."],[[["\u003cp\u003eThis module focuses on differentiating between categorical and numerical data within machine learning.\u003c/p\u003e\n"],["\u003cp\u003eYou will learn how to represent categorical data using one-hot vectors and address common issues associated with it.\u003c/p\u003e\n"],["\u003cp\u003eThe module covers encoding techniques for converting categorical data into numerical vectors suitable for model training.\u003c/p\u003e\n"],["\u003cp\u003eFeature crosses, a method for combining categorical features to capture interactions, are also discussed.\u003c/p\u003e\n"],["\u003cp\u003eIt is assumed you have prior knowledge of introductory machine learning and working with numerical data.\u003c/p\u003e\n"]]],[],null,["| **Estimated module length:** 50 minutes\n| **Learning objectives**\n|\n| - Distinguish categorical data from numerical data.\n| - Represent categorical data with one-hot vectors.\n| - Address common issues with categorical data.\n| - Create feature crosses.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Working with numerical data](/machine-learning/crash-course/numerical-data)\n\n[**Categorical data**](/machine-learning/glossary#categorical-data) has a\n*specific set* of possible values. For example:\n\n- The different species of animals in a national park\n- The names of streets in a particular city\n- Whether or not an email is spam\n- The colors that house exteriors are painted\n- Binned numbers, which are described in the [Working with Numerical\n Data](/machine-learning/crash-course/numerical-data) module\n\nNumbers can also be categorical data\n\nTrue [**numerical data**](/machine-learning/glossary#numerical-data)\ncan be meaningfully multiplied. For example, consider a\nmodel that predicts the value of a house based on its area.\nNote that a useful model for evaluating house prices typically relies on\nhundreds of features. That said, all else being equal, a house of 200 square\nmeters should be roughly twice as valuable as an identical house of 100 square\nmeters.\n\nOftentimes, you should represent features that contain integer values as\ncategorical data instead of numerical data. For example, consider a postal\ncode feature in which the values are integers. If you represent this\nfeature numerically rather than categorically, you're asking the model\nto find a numeric relationship\nbetween different postal codes. That is, you're telling the model to\ntreat postal code 20004 as twice (or half) as large a signal as postal code\n10002. Representing postal codes as categorical data lets the model\nweight each individual postal code separately.\n\nEncoding\n\n**Encoding** means converting categorical or other data to numerical vectors\nthat a model can train on. This conversion is necessary because models can\nonly train on floating-point values; models can't train on strings such as\n`\"dog\"` or `\"maple\"`. This module explains different\nencoding methods for categorical data.\n| **Key terms:**\n|\n| - [Categorical data](/machine-learning/glossary#categorical-data)\n- [Numerical data](/machine-learning/glossary#numerical-data) \n[Help Center](https://support.google.com/machinelearningeducation)"]]