Mulai 29 April 2025, model Gemini 1.5 Pro dan Gemini 1.5 Flash tidak tersedia di project yang belum pernah menggunakan model ini, termasuk project baru. Untuk mengetahui detailnya, lihat Versi dan siklus proses model.
Contoh sintaksis: Menampilkan struktur dasar permintaan API panggilan fungsi.
Parameter API: Menjelaskan parameter yang digunakan dalam panggilan fungsi, seperti FunctionDeclaration dan FunctionCallingConfig.
Contoh: Menyediakan contoh kode untuk mengirim deklarasi fungsi dan mengonfigurasi perilaku panggilan fungsi.
Panggilan fungsi meningkatkan kemampuan LLM dalam memberikan jawaban yang relevan dan sesuai konteks.
Dengan Function Calling API, Anda dapat menyediakan fungsi kustom ke model AI generatif. Model tidak memanggil fungsi ini secara langsung. Sebagai gantinya, fungsi ini menghasilkan output data terstruktur yang menentukan nama fungsi dan argumen yang disarankan. Output ini memungkinkan Anda memanggil API atau sistem informasi eksternal, seperti database, sistem pengelolaan hubungan pelanggan (CRM), dan repositori dokumen. Kemudian, Anda dapat memberikan output API yang dihasilkan kembali ke model untuk meningkatkan kualitas responsnya.
Untuk ringkasan konseptual tentang pemanggilan fungsi, lihat Pemanggilan fungsi.
Bagian ini menjelaskan parameter untuk panggilan fungsi. Untuk mengetahui detail implementasi, lihat bagian Contoh.
FunctionDeclaration
FunctionDeclaration menentukan fungsi yang dapat dibuat input JSON-nya oleh model, berdasarkan spesifikasi OpenAPI 3.0.
Parameter
name
string
Nama fungsi yang akan dipanggil. Nama harus diawali dengan huruf atau garis bawah. Dapat berisi huruf (a-z, A-Z), angka (0-9), garis bawah, titik, atau tanda hubung, dengan panjang maksimal 64 karakter.
description
Opsional: string
Deskripsi tujuan fungsi. Model menggunakan deskripsi ini untuk memutuskan cara dan apakah akan memanggil fungsi tersebut. Untuk hasil terbaik, sebaiknya sertakan deskripsi.
parameters
Opsional: Schema
Parameter fungsi, yang dijelaskan dalam format Objek Skema JSON OpenAPI.
response
Opsional: Schema
Output dari fungsi, yang dijelaskan dalam format Objek Skema JSON OpenAPI.
Untuk mengetahui informasi selengkapnya, lihat Panggilan fungsi.
Schema
Schema menentukan format data input dan output dalam panggilan fungsi, berdasarkan spesifikasi Skema OpenAPI 3.0.
Parameter
jenis
string
Jenis data. Harus salah satu dari berikut ini
STRING
INTEGER
BOOLEAN
NUMBER
ARRAY
OBJECT
description
Opsional: string
Deskripsi data.
enum
Opsional: string[]
Kemungkinan nilai untuk elemen jenis primitif.
items
Opsional: Schema[]
Skema untuk elemen jenis ARRAY.
properties
Opsional: Schema
Skema untuk properti jenis OBJECT.
required
Opsional: string[]
Properti wajib dari jenis OBJECT.
nullable
Opsional: bool
Menunjukkan apakah nilai dapat berupa null.
FunctionCallingConfig
FunctionCallingConfig memungkinkan Anda mengontrol perilaku model dan menentukan fungsi mana yang akan dipanggil.
Parameter
mode
Opsional: enum/string[]
AUTO: Ini adalah perilaku default. Model memutuskan apakah akan memanggil fungsi atau merespons dengan bahasa alami berdasarkan konteks.
NONE: Model tidak memanggil fungsi apa pun.
ANY: Model dibatasi untuk selalu memprediksi panggilan fungsi. Jika Anda tidak memberikan allowed_function_names, model akan memilih dari semua deklarasi fungsi yang tersedia. Jika Anda memberikan allowed_function_names, model akan memilih dari kumpulan fungsi tersebut.
allowed_function_names
Opsional: string[]
Daftar nama fungsi yang akan dipanggil. Anda hanya dapat menyetelnya jika mode adalah ANY. Nama fungsi harus cocok dengan FunctionDeclaration.name. Jika modenya adalah ANY, model akan memprediksi panggilan fungsi dari daftar nama fungsi yang Anda berikan.
functionCall
functionCall adalah prediksi yang ditampilkan dari model. Objek ini berisi nama fungsi yang akan dipanggil (functionDeclaration.name) dan objek JSON terstruktur dengan parameter dan nilainya.
Parameter
name
string
Nama fungsi yang akan dipanggil.
args
Struct
Parameter fungsi dan nilainya dalam format objek JSON.
functionResponse adalah output dari FunctionCall. Objek ini berisi nama fungsi yang dipanggil dan objek JSON terstruktur dengan output fungsi. Anda memberikan respons ini kembali ke model untuk digunakan sebagai konteks.
Parameter
name
string
Nama fungsi yang dipanggil.
response
Struct
Respons fungsi dalam format objek JSON.
Contoh
Mengirim deklarasi fungsi
Contoh berikut menunjukkan cara mengirim kueri dan deklarasi fungsi ke model.
REST
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
PROJECT_ID=myproject LOCATION=us-central1 MODEL_ID=gemini-2.5-flash curl-XPOST\-H"Authorization: Bearer $(gcloudauthprint-access-token)"\-H"Content-Type: application/json"\https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent\-d'{ "contents": [{ "role": "user", "parts": [{ "text": "What is the weather in Boston?" }] }], "tools": [{ "functionDeclarations": [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616" } }, "required": [ "location" ] } } ] }] }'
Gen AI SDK untuk Python
fromgoogleimportgenaifromgoogle.genai.typesimportGenerateContentConfig,HttpOptionsdefget_current_weather(location:str)-> str:"""Example method. Returns the current weather. Args: location: The city and state, e.g. San Francisco, CA """weather_map:dict[str,str]={"Boston, MA":"snowing","San Francisco, CA":"foggy","Seattle, WA":"raining","Austin, TX":"hot","Chicago, IL":"windy",}returnweather_map.get(location,"unknown")client=genai.Client(http_options=HttpOptions(api_version="v1"))model_id="gemini-2.5-flash"response=client.models.generate_content(model=model_id,contents="What is the weather like in Boston?",config=GenerateContentConfig(tools=[get_current_weather],temperature=0,),)print(response.text)# Example response:# The weather in Boston is sunny.
Node.js
const{VertexAI,FunctionDeclarationSchemaType,}=require('@google-cloud/vertexai');constfunctionDeclarations=[{function_declarations:[{name:'get_current_weather',description:'get weather in a given location',parameters:{type:FunctionDeclarationSchemaType.OBJECT,properties:{location:{type:FunctionDeclarationSchemaType.STRING},unit:{type:FunctionDeclarationSchemaType.STRING,enum:['celsius','fahrenheit'],},},required:['location'],},},],},];/** * TODO(developer): Update these variables before running the sample. */asyncfunctionfunctionCallingBasic(projectId='PROJECT_ID',location='us-central1',model='gemini-2.0-flash-001'){// Initialize Vertex with your Cloud project and locationconstvertexAI=newVertexAI({project:projectId,location:location});// Instantiate the modelconstgenerativeModel=vertexAI.preview.getGenerativeModel({model:model,});constrequest={contents:[{role:'user',parts:[{text:'What is the weather in Boston?'}]},],tools:functionDeclarations,};constresult=awaitgenerativeModel.generateContent(request);console.log(JSON.stringify(result.response.candidates[0].content));}
Java
importcom.google.cloud.vertexai.VertexAI;importcom.google.cloud.vertexai.api.Content;importcom.google.cloud.vertexai.api.FunctionDeclaration;importcom.google.cloud.vertexai.api.GenerateContentResponse;importcom.google.cloud.vertexai.api.Schema;importcom.google.cloud.vertexai.api.Tool;importcom.google.cloud.vertexai.api.Type;importcom.google.cloud.vertexai.generativeai.ChatSession;importcom.google.cloud.vertexai.generativeai.ContentMaker;importcom.google.cloud.vertexai.generativeai.GenerativeModel;importcom.google.cloud.vertexai.generativeai.PartMaker;importcom.google.cloud.vertexai.generativeai.ResponseHandler;importjava.io.IOException;importjava.util.Arrays;importjava.util.Collections;publicclassFunctionCalling{publicstaticvoidmain(String[]args)throwsIOException{// TODO(developer): Replace these variables before running the sample.StringprojectId="your-google-cloud-project-id";Stringlocation="us-central1";StringmodelName="gemini-2.0-flash-001";StringpromptText="What's the weather like in Paris?";whatsTheWeatherLike(projectId,location,modelName,promptText);}// A request involving the interaction with an external toolpublicstaticStringwhatsTheWeatherLike(StringprojectId,Stringlocation,StringmodelName,StringpromptText)throwsIOException{// Initialize client that will be used to send requests.// This client only needs to be created once, and can be reused for multiple requests.try(VertexAIvertexAI=newVertexAI(projectId,location)){FunctionDeclarationfunctionDeclaration=FunctionDeclaration.newBuilder().setName("getCurrentWeather").setDescription("Get the current weather in a given location").setParameters(Schema.newBuilder().setType(Type.OBJECT).putProperties("location",Schema.newBuilder().setType(Type.STRING).setDescription("location").build()).addRequired("location").build()).build();System.out.println("Function declaration:");System.out.println(functionDeclaration);// Add the function to a "tool"Tooltool=Tool.newBuilder().addFunctionDeclarations(functionDeclaration).build();// Start a chat session from a model, with the use of the declared function.GenerativeModelmodel=newGenerativeModel(modelName,vertexAI).withTools(Arrays.asList(tool));ChatSessionchat=model.startChat();System.out.println(String.format("Ask the question: %s",promptText));GenerateContentResponseresponse=chat.sendMessage(promptText);// The model will most likely return a function call to the declared// function `getCurrentWeather` with "Paris" as the value for the// argument `location`.System.out.println("\nPrint response: ");System.out.println(ResponseHandler.getContent(response));// Provide an answer to the model so that it knows what the result// of a "function call" is.Contentcontent=ContentMaker.fromMultiModalData(PartMaker.fromFunctionResponse("getCurrentWeather",Collections.singletonMap("currentWeather","sunny")));System.out.println("Provide the function response: ");System.out.println(content);response=chat.sendMessage(content);// See what the model replies nowSystem.out.println("Print response: ");StringfinalAnswer=ResponseHandler.getText(response);System.out.println(finalAnswer);returnfinalAnswer;}}}
Go
import("context""fmt""io"genai"google.golang.org/genai")//generateWithFuncCallshowshowtosubmitapromptandafunctiondeclarationtothemodel,//allowingittosuggestacalltothefunctiontofetchexternaldata.Returningthisdata//enablesthemodeltogenerateatextresponsethatincorporatesthedata.funcgenerateWithFuncCall(wio.Writer)error{ctx:=context.Background()client,err:=genai.NewClient(ctx, &genai.ClientConfig{HTTPOptions:genai.HTTPOptions{APIVersion:"v1"},})iferr!=nil{returnfmt.Errorf("failed to create genai client: %w",err)}weatherFunc:= &genai.FunctionDeclaration{Description:"Returns the current weather in a location.",Name:"getCurrentWeather",Parameters: &genai.Schema{Type:"object",Properties:map[string]*genai.Schema{"location":{Type:"string"},},Required:[]string{"location"},},}config:= &genai.GenerateContentConfig{Tools:[]*genai.Tool{{FunctionDeclarations:[]*genai.FunctionDeclaration{weatherFunc}},},Temperature:genai.Ptr(float32(0.0)),}modelName:="gemini-2.5-flash"contents:=[]*genai.Content{{Parts:[]*genai.Part{{Text:"What is the weather like in Boston?"},},Role:"user"},}resp,err:=client.Models.GenerateContent(ctx,modelName,contents,config)iferr!=nil{returnfmt.Errorf("failed to generate content: %w",err)}varfuncCall*genai.FunctionCallfor_,p:=rangeresp.Candidates[0].Content.Parts{ifp.FunctionCall!=nil{funcCall=p.FunctionCallfmt.Fprint(w,"The model suggests to call the function ")fmt.Fprintf(w,"%q with args: %v\n",funcCall.Name,funcCall.Args)//Exampleresponse://Themodelsuggeststocallthefunction"getCurrentWeather"withargs:map[location:Boston]}}iffuncCall==nil{returnfmt.Errorf("model did not suggest a function call")}//UsesyntheticdatatosimulatearesponsefromtheexternalAPI.//Inarealapplication,thiswouldcomefromanactualweatherAPI.funcResp:= &genai.FunctionResponse{Name:"getCurrentWeather",Response:map[string]any{"location":"Boston","temperature":"38","temperature_unit":"F","description":"Cold and cloudy","humidity":"65","wind":`{"speed":"10","direction":"NW"}`,},}//ReturnconversationturnsandAPIresponsetocompletethemodel's response.contents=[]*genai.Content{{Parts:[]*genai.Part{{Text:"What is the weather like in Boston?"},},Role:"user"},{Parts:[]*genai.Part{{FunctionCall:funcCall},}},{Parts:[]*genai.Part{{FunctionResponse:funcResp},}},}resp,err=client.Models.GenerateContent(ctx,modelName,contents,config)iferr!=nil{returnfmt.Errorf("failed to generate content: %w",err)}respText:=resp.Text()fmt.Fprintln(w,respText)//Exampleresponse://TheweatherinBostoniscoldandcloudywithatemperatureof38degreesFahrenheit.Thehumidityis...returnnil}
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
PROJECT_ID: .
MODEL_ID: ID model yang sedang diproses.
Metode HTTP dan URL:
POST https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions
Isi JSON permintaan:
{ "model": "google/MODEL_ID", "messages": [ { "role": "user", "content": "What is the weather in Boston?" } ], "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "OBJECT", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616" } }, "required": ["location"] } } } ] }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:
importvertexaiimportopenaifromgoogle.authimportdefault,transport# TODO(developer): Update & uncomment below line# PROJECT_ID = "your-project-id"location="us-central1"vertexai.init(project=PROJECT_ID,location=location)# Programmatically get an access tokencredentials,_=default(scopes=["https://www.googleapis.com/auth/cloud-platform"])auth_request=transport.requests.Request()credentials.refresh(auth_request)# # OpenAI Clientclient=openai.OpenAI(base_url=f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{location}/endpoints/openapi",api_key=credentials.token,)tools=[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA or a zip code e.g. 95616",},},"required":["location"],},},}]messages=[]messages.append({"role":"system","content":"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",})messages.append({"role":"user","content":"What is the weather in Boston?"})response=client.chat.completions.create(model="google/gemini-2.0-flash-001",messages=messages,tools=tools,)print("Function:",response.choices[0].message.tool_calls[0].id)print("Arguments:",response.choices[0].message.tool_calls[0].function.arguments)# Example response:# Function: get_current_weather# Arguments: {"location":"Boston"}
Mengonfigurasi perilaku panggilan fungsi
Contoh berikut menunjukkan cara meneruskan FunctionCallingConfig ke model.
Anda dapat menggunakan functionCallingConfig untuk mewajibkan model menghasilkan panggilan fungsi tertentu. Untuk mengonfigurasi perilaku ini:
Tetapkan fungsi yang memanggil mode ke ANY.
Tentukan nama fungsi yang ingin Anda gunakan di allowed_function_names. Jika allowed_function_names kosong, salah satu fungsi yang disediakan dapat ditampilkan.
REST
PROJECT_ID=myproject LOCATION=us-central1 MODEL_ID=gemini-2.5-flash curl-XPOST\-H"Authorization: Bearer $(gcloudauthprint-access-token)"\-H"Content-Type: application/json"\https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent\-d'{ "contents": [{ "role": "user", "parts": [{ "text": "Do you have the White Pixel 8 Pro 128GB in stock in the US?" }] }], "tools": [{ "functionDeclarations": [ { "name": "get_product_sku", "description": "Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc", "parameters": { "type": "object", "properties": { "product_name": {"type": "string", "description": "Product name"} } } }, { "name": "get_store_location", "description": "Get the location of the closest store", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "Location"} }, } } ] }], "toolConfig": { "functionCallingConfig": { "mode":"ANY", "allowedFunctionNames": ["get_product_sku"] } }, "generationConfig": { "temperature": 0.95, "topP": 1.0, "maxOutputTokens": 8192 } }'
Gen AI SDK untuk Python
fromgoogleimportgenaifromgoogle.genai.typesimport(FunctionDeclaration,GenerateContentConfig,HttpOptions,Tool,)client=genai.Client(http_options=HttpOptions(api_version="v1"))model_id="gemini-2.5-flash"get_album_sales=FunctionDeclaration(name="get_album_sales",description="Gets the number of albums sold",# Function parameters are specified in JSON schema formatparameters={"type":"OBJECT","properties":{"albums":{"type":"ARRAY","description":"List of albums","items":{"description":"Album and its sales","type":"OBJECT","properties":{"album_name":{"type":"STRING","description":"Name of the music album",},"copies_sold":{"type":"INTEGER","description":"Number of copies sold",},},},},},},)sales_tool=Tool(function_declarations=[get_album_sales],)response=client.models.generate_content(model=model_id,contents='At Stellar Sounds, a music label, 2024 was a rollercoaster. "Echoes of the Night," a debut synth-pop album, ''surprisingly sold 350,000 copies, while veteran rock band "Crimson Tide\'s" latest, "Reckless Hearts," ''lagged at 120,000. Their up-and-coming indie artist, "Luna Bloom\'s" EP, "Whispers of Dawn," ''secured 75,000 sales. The biggest disappointment was the highly-anticipated rap album "Street Symphony" '"only reaching 100,000 units. Overall, Stellar Sounds moved over 645,000 units this year, revealing unexpected ""trends in music consumption.",config=GenerateContentConfig(tools=[sales_tool],temperature=0,),)print(response.function_calls)# Example response:# [FunctionCall(# id=None,# name="get_album_sales",# args={# "albums": [# {"album_name": "Echoes of the Night", "copies_sold": 350000},# {"copies_sold": 120000, "album_name": "Reckless Hearts"},# {"copies_sold": 75000, "album_name": "Whispers of Dawn"},# {"copies_sold": 100000, "album_name": "Street Symphony"},# ]# },# )]
Node.js
const{VertexAI,FunctionDeclarationSchemaType,}=require('@google-cloud/vertexai');constfunctionDeclarations=[{function_declarations:[{name:'get_product_sku',description:'Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc',parameters:{type:FunctionDeclarationSchemaType.OBJECT,properties:{productName:{type:FunctionDeclarationSchemaType.STRING},},},},{name:'get_store_location',description:'Get the location of the closest store',parameters:{type:FunctionDeclarationSchemaType.OBJECT,properties:{location:{type:FunctionDeclarationSchemaType.STRING},},},},],},];consttoolConfig={function_calling_config:{mode:'ANY',allowed_function_names:['get_product_sku'],},};constgenerationConfig={temperature:0.95,topP:1.0,maxOutputTokens:8192,};/** * TODO(developer): Update these variables before running the sample. */asyncfunctionfunctionCallingAdvanced(projectId='PROJECT_ID',location='us-central1',model='gemini-2.0-flash-001'){// Initialize Vertex with your Cloud project and locationconstvertexAI=newVertexAI({project:projectId,location:location});// Instantiate the modelconstgenerativeModel=vertexAI.preview.getGenerativeModel({model:model,});constrequest={contents:[{role:'user',parts:[{text:'Do you have the White Pixel 8 Pro 128GB in stock in the US?'},],},],tools:functionDeclarations,tool_config:toolConfig,generation_config:generationConfig,};constresult=awaitgenerativeModel.generateContent(request);console.log(JSON.stringify(result.response.candidates[0].content));}
Go
import("context""encoding/json""errors""fmt""io""cloud.google.com/go/vertexai/genai")// functionCallsChat opens a chat session and sends 4 messages to the model:// - convert a first text question into a structured function call request// - convert the first structured function call response into natural language// - convert a second text question into a structured function call request// - convert the second structured function call response into natural languagefuncfunctionCallsChat(wio.Writer,projectID,location,modelNamestring)error{// location := "us-central1"// modelName := "gemini-2.0-flash-001"ctx:=context.Background()client,err:=genai.NewClient(ctx,projectID,location)iferr!=nil{returnfmt.Errorf("unable to create client: %w",err)}deferclient.Close()model:=client.GenerativeModel(modelName)// Build an OpenAPI schema, in memoryparamsProduct:=&genai.Schema{Type:genai.TypeObject,Properties:map[string]*genai.Schema{"productName":{Type:genai.TypeString,Description:"Product name",},},}fundeclProductInfo:=&genai.FunctionDeclaration{Name:"getProductSku",Description:"Get the SKU for a product",Parameters:paramsProduct,}paramsStore:=&genai.Schema{Type:genai.TypeObject,Properties:map[string]*genai.Schema{"location":{Type:genai.TypeString,Description:"Location",},},}fundeclStoreLocation:=&genai.FunctionDeclaration{Name:"getStoreLocation",Description:"Get the location of the closest store",Parameters:paramsStore,}model.Tools=[]*genai.Tool{{FunctionDeclarations:[]*genai.FunctionDeclaration{fundeclProductInfo,fundeclStoreLocation,}},}model.SetTemperature(0.0)chat:=model.StartChat()// Send a prompt for the first conversation turn that should invoke the getProductSku functionprompt:="Do you have the Pixel 8 Pro in stock?"fmt.Fprintf(w,"Question: %s\n",prompt)resp,err:=chat.SendMessage(ctx,genai.Text(prompt))iferr!=nil{returnerr}iflen(resp.Candidates)==0||len(resp.Candidates[0].Content.Parts)==0{returnerrors.New("empty response from model")}// The model has returned a function call to the declared function `getProductSku`// with a value for the argument `productName`.jsondata,err:=json.MarshalIndent(resp.Candidates[0].Content.Parts[0],"\t"," ")iferr!=nil{returnfmt.Errorf("json.MarshalIndent: %w",err)}fmt.Fprintf(w,"function call generated by the model:\n\t%s\n",string(jsondata))// Create a function call response, to simulate the result of a call to a// real servicefunresp:=&genai.FunctionResponse{Name:"getProductSku",Response:map[string]any{"sku":"GA04834-US","in_stock":"yes",},}jsondata,err=json.MarshalIndent(funresp,"\t"," ")iferr!=nil{returnfmt.Errorf("json.MarshalIndent: %w",err)}fmt.Fprintf(w,"function call response sent to the model:\n\t%s\n\n",string(jsondata))// And provide the function call response to the modelresp,err=chat.SendMessage(ctx,funresp)iferr!=nil{returnerr}iflen(resp.Candidates)==0||len(resp.Candidates[0].Content.Parts)==0{returnerrors.New("empty response from model")}// The model has taken the function call response as input, and has// reformulated the response to the user.jsondata,err=json.MarshalIndent(resp.Candidates[0].Content.Parts[0],"\t"," ")iferr!=nil{returnfmt.Errorf("json.MarshalIndent: %w",err)}fmt.Fprintf(w,"Answer generated by the model:\n\t%s\n\n",string(jsondata))// Send a prompt for the second conversation turn that should invoke the getStoreLocation functionprompt2:="Is there a store in Mountain View, CA that I can visit to try it out?"fmt.Fprintf(w,"Question: %s\n",prompt)resp,err=chat.SendMessage(ctx,genai.Text(prompt2))iferr!=nil{returnerr}iflen(resp.Candidates)==0||len(resp.Candidates[0].Content.Parts)==0{returnerrors.New("empty response from model")}// The model has returned a function call to the declared function `getStoreLocation`// with a value for the argument `store`.jsondata,err=json.MarshalIndent(resp.Candidates[0].Content.Parts[0],"\t"," ")iferr!=nil{returnfmt.Errorf("json.MarshalIndent: %w",err)}fmt.Fprintf(w,"function call generated by the model:\n\t%s\n",string(jsondata))// Create a function call response, to simulate the result of a call to a// real servicefunresp=&genai.FunctionResponse{Name:"getStoreLocation",Response:map[string]any{"store":"2000 N Shoreline Blvd, Mountain View, CA 94043, US",},}jsondata,err=json.MarshalIndent(funresp,"\t"," ")iferr!=nil{returnfmt.Errorf("json.MarshalIndent: %w",err)}fmt.Fprintf(w,"function call response sent to the model:\n\t%s\n\n",string(jsondata))// And provide the function call response to the modelresp,err=chat.SendMessage(ctx,funresp)iferr!=nil{returnerr}iflen(resp.Candidates)==0||len(resp.Candidates[0].Content.Parts)==0{returnerrors.New("empty response from model")}// The model has taken the function call response as input, and has// reformulated the response to the user.jsondata,err=json.MarshalIndent(resp.Candidates[0].Content.Parts[0],"\t"," ")iferr!=nil{returnfmt.Errorf("json.MarshalIndent: %w",err)}fmt.Fprintf(w,"Answer generated by the model:\n\t%s\n\n",string(jsondata))returnnil}
Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:
PROJECT_ID: .
MODEL_ID: ID model yang sedang diproses.
Metode HTTP dan URL:
POST https://aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/global/endpoints/openapi/chat/completions
Isi JSON permintaan:
{ "model": "google/MODEL_ID", "messages": [ { "role": "user", "content": "What is the weather in Boston?" } ], "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "OBJECT", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616" } }, "required": ["location"] } } } ], "tool_choice": "auto" }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:
importvertexaiimportopenaifromgoogle.authimportdefault,transport# TODO(developer): Update & uncomment below line# PROJECT_ID = "your-project-id"location="us-central1"vertexai.init(project=PROJECT_ID,location=location)# Programmatically get an access tokencredentials,_=default(scopes=["https://www.googleapis.com/auth/cloud-platform"])auth_request=transport.requests.Request()credentials.refresh(auth_request)# OpenAI Clientclient=openai.OpenAI(base_url=f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{location}/endpoints/openapi",api_key=credentials.token,)tools=[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA or a zip code e.g. 95616",},},"required":["location"],},},}]messages=[]messages.append({"role":"system","content":"Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",})messages.append({"role":"user","content":"What is the weather in Boston, MA?"})response=client.chat.completions.create(model="google/gemini-2.0-flash-001",messages=messages,tools=tools,tool_choice="auto",)print("Function:",response.choices[0].message.tool_calls[0].id)print("Arguments:",response.choices[0].message.tool_calls[0].function.arguments)# Example response:# Function: get_current_weather# Arguments: {"location":"Boston"}
Langkah berikutnya
Untuk mempelajari lebih lanjut, lihat dokumentasi berikut:
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-08-19 UTC."],[],[]]