Fairness Indicators

Fairness Indicators is a library that enables easy computation of commonly-identified fairness metrics for binary and multiclass classifiers. With the Fairness Indicators tool suite, you can:

  • Compute commonly-identified fairness metrics for classification models
  • Compare model performance across subgroups to a baseline, or to other models
  • Use confidence intervals to surface statistically significant disparities
  • Perform evaluation over multiple thresholds

Use Fairness Indicators via the:

eval_config_pbtxt = """  model_specs {     label_key: "%s" }  metrics_specs {     metrics {         class_name: "FairnessIndicators"         config: '{ "thresholds": [0.25, 0.5, 0.75] }'     }     metrics {         class_name: "ExampleCount"     } }  slicing_specs {} slicing_specs {     feature_keys: "%s" }  options {     compute_confidence_intervals { value: False }     disabled_outputs{values: "analysis"} } """ % (LABEL_KEY, GROUP_KEY)

Resources